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Abstract-A numerical investigation of natural convection flow along irregular vertical surfaces in non- 
Newtonian fluids is reported. A wavy vertical surface is used as an example to show the heat transfer 
mechanism near such surfaces. The results demonstrate that with an increase of flow index, the axial 
velocity increases, but the velocity boundary layer becomes thinner. The difference between the velocity in 
the crests and the troughs is indiscernible. The boundary layer around nodes is getting thicker compared 
to that of the crests and the troughs. When the natural convection boundary layer grows thick, 
the amplitude of the local Nusselt number gradually decreases. The effects of Prandtl number, flow index 
and surface amplitude in non-Newtonian fluids are also discussed in detail. c 1997 Elsevier Science Ltd. 

1. INTRODUCTION 

The classical problem of laminar natural convection 
heat transfer in a Newtonian fluid along a vertical 
plate is well known. In general, it is not vertical sur- 
faces or Newtonian fluids for many practical appli- 
cations. The objective of this work is to analyze the 
natural convection heat transfer of non-Newtonian 
fluids along a wavy vertical plate. For Newtonian 
fluids, Sparrow et al. [1] developed the similarity solu- 
tion for the non-isothermal boundary condition on a 
vertical plate. Several researchers [2-51 have studied 
vertical systems under various boundary conditions. 
Recently, Yao [68] studied the effects of a wavy sur- 
face on thermal bodies. Proposing that the surfaces of 
the fluid flow are not uniform, but irregular surfaces 
in practical situations, he used a simple coordinate 
transformation method to change the wavy surface 
into a flat surface. In 1995, Rees and Pop [9] inves- 
tigated the effects of nonuniformities on a large-scale 
surface in a porous medium. In this research, they 
assumed that when the Rayleigh number is high, the 
amplitude of a wave has a close order with a wave- 
length. In their results, the highest thermal point 
occurred when the slope of a surface geometry func- 
tion was a maximum. All these [6-91 were done in 
Newtonian fluids. In general, non-Newtonian fluids 
are more practical and applicable to many tech- 
nological areas. A review of developments to 1982 
was presented by Shenoy and Mashelkar [lo]. Recent 
contributions in the area of natural convection of non- 
Newtonian fluids along vertical surfaces were made 
by [ 1 l-l 31 theoretically and [ 141 experimentally, 
respectively. 

All previous theoretical and experimental studies, 
however, considered only flat plates or simple two- 

dimensional bodies. So, it is necessary to study the 
heat transfer mechanism on non-Newtonian fluids 
with a complex geometry which is easily encountered 
in heat transfer enhancement devices such as cooling 
fins. In this paper the effects of a wavy surface, tem- 
perature profiles, Prandtl number and flow index for 
non-Newtonian fluids are investigated. 

2. MATHEMATICAL ANALYSIS AND NUMERICAL 

METHOD 

A physical geometry and coordinate system of a 
wavy vertical plate is shown in Fig. 1. The surface of 
the vertical plate is described by y = CT(X) where g(x) 
is an arbitrary geometry function. The profile of the 
surface shown in Fig. 1 is 

y = a(x) = c( sin(27rx). (1) 

Here, c( is the non-dimensional amplitude of the wavy 
surface. The ambient temperature is maintained at a 
constant temperature T, and the surface of the plate 
is kept at a constant temperature T,. The flow is steady 
and two-dimensional. All fluid properties are constant 
except the density in the buoyancy force term, and it 
is assumed that the Boussinesq approximation is valid. 
The Cauchy stress for power-law fluids can be written 
as, 

T = -PI-&,/“-‘A,. (2) 

Here P is the pressure, I is the Kronecker delta, m is 
the consistency index, n is the power-law flow index, 
A, and A, are, respectively, the first Rivlin-Ericksen 
tensor and the second Rivlin-Ericksen tensor. 
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NOMENCLATURE 

u amplitude of wave u. 1’ velocity components in (_u,r) 

A, first Rivlin-Ericksen tensor directions 

A2 second RivlinEricksen X. 1’ coordinates. 
tensor 

(‘P specific heat Greek symbols 

9 gravitational acceleration dimensionless amplitude of wave 

h, local heat transfer coefficient ; thermal expansion coefficient 
I Kronecker delta 0 dimensionless temperature 
k thermal conductivity of fluid P density 
1 wavelength (T surface geometry function. 
m consistency index 
n power-law index Superscripts 

N,r generalized Grashof dimensionless quantity 
number dimensionless quantity 

N,r generalized Prandtl number derivative with respect to s. 

N& local Nusselt number 
P pressure Subscripts 

q heat flux W wall 
T temperature ‘x. free stream. 

The conservation equations for steady laminar flow 
can be written as 

V.T+pb = p; 

v*v=o (4) 

pcpv. V = kV2 T. (5) 

Here v is the velocity vector, T temperature, cp specific 
heat, k thermal conductivity. The body force, b, for 
the natural convection situation can be defined as 

(6) 

The governing equations (equations (3)-(5)) are 
transformed from a physical coordinate system (.Y, y) 
to a dimensionless coordinate system (.Y,.,‘) by using 
the following transformation and dimensionless quan- 
tities : 

(12) 

(13) 

where N,, and N,, are the generalized Grashof number 
and the generalized Prandtl number, respectively. 

By using the coordinate transformation equation 
(7), the boundary surface can be transformed from 
the wavy vertical surface to a flat surface. Under the 
assumption of a large Grashof number, the con- 
servation equations of mass, linear momentum, and 
energy, equations (3)-(5). can be written as 

(14) 

(16) 
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Fig. 1. Physical model and coordinate system. 

It is noted, from equation (16), that the pressure gradi- a 
ent along the J-direction is O(N~;‘~2’“+‘“) and is 

c= 

determined by the left-hand side of the equation. The 
[2(n+ l)n]“2, 

pressure gradient in the f-direction can, then, be 
obtained from the potential flow theory. In the current u^ = [2@+ l)~]‘w”+‘“~, 

problem, ap/3~ = 0. Elimination of ap/ja~ = 0 in 
equations (15) and (16) yields three equations in ti, c^ 
and 0 in a parabolic coordinate ($9) : 

(1) conservation of mass 

.t = x 

J 
y = [2@+ 1)K]l:‘2’“+l” 

(20) 

(21) 
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(a)n=0.8 
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(b)n=l.O 

(c) n=1.2 
Fig. 2. Axtal velocity distribution for r = 0.1. 
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(2) conservation of linear momentum 

[2(n+l)i-]~~.ILi~+([2(n+l),~]‘l~”~’”””’+’~’ 

aLi 
- [2(n + l)#’ -n),nl;ti) ^ 

UJJ 

( 
F$ [2@+ l)#‘~Wn + a’a”[2(n + l)a] I++’ = _ 

1 +Cr’Z 

0 
+- 

1+0’* 
+(, +,JZ)2 ti “, 

0 a$ ay 

(3) conservation of energy 

[2(n+ 1)1(-11’.t”,12fl~~‘+“‘d~ 

(23) 

(24) 

The appropriate transformed boundary conditions 
are : 

3.5 

3.0 

2.5 

fi=C=O atl;=O (25) 

O=l (26) 

fi-0 as3 + x (27) 

0 = 0. (28 

The dimensionless governing equations (22)-(24) and 
the boundary conditions (25)-(28) are solved by the 
finite volume method which is discussed by Patankar 
[ 151. The numerical grids in a computation domain are 
easy to fit a rectangular coordinate system. Mapping a 
curvilinear coordinate to the rectangular coordinate 
reduces the effort of numerical calculation. The dis- 
cretized governing equations were solved by a line- 
by-line technique, which utilizes a tri-diagonal-matrix 
algorithm for the solution along each line of 
unknowns. 

3. RESULTS AND DISCUSSION 

To obtain results with high accuracy, the nodes 
must be very fine near the wall and can gradually turn 
to a coarser grid in the p-direction. Numerical results 
were calculated with 0 = M sin(2nx) to show the 
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-.- a=O.15 

-..- a=020 

- - a=0.25 

Wavy surface, a=O. 10 

I I I I I 

0.0 0.5 1.0 1.5 2.0 2.5 3.0 

ji 
Fig. 4. Comparison of local heat transfer rate for n = 0. I 
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advantages of the transformation method and effect of 
the wavy surface in natural convection. For a different 
geometry the appropriate function c can be used. 
With a small curvilinear surface, for example 
IS z O(N, ‘!‘@‘+‘)), the effect of the wave surface is 
negligible and the governing equations can be 
assumed to be those for the flat plate. However, for a 
uniform amplitude surface, the curvature effects are 
important, and can not be neglected. To validate the 
numerical accuracy of the solution procedure, the 
numerical results of velocities, temperature and heat 
transfer coefficient for the case of Newtonian fluids 
over a wavy vertical plate were compared with those 
of Yao [6]. The results agreed within 1%. Further 
details are given by Kim and Chen [16]. 

The governing equations for natural convection 
with a non-Newtonian fluid have been numerically 
solved for three different flow indices, n = 0.8, 1 .O and 
1.2. They represent pseudoplastic fluids, Newtonian 
fluids, dilatant fluids, respectively. The velocity pro- 
files of the dimensionless amplitude tl = 0.1 (CX = a/l 
is the dimensionless wave amplitude of the wavy plate) 
were shown in Fig. 2(a-c). It can be seen from these 
figures that the maximum .?-components of the vel- 
ocity increase but the velocity boundary layer becomes 
thinner with the increase of flow index. Figure 3(a*) 
shows the dimensionless temperature profiles for each 
case of n values. The thermal boundary layers of 
pseudoplastic fluids are thinner than those of dilatant 
fluids. The temperature gradient taken from Fig. 3(a- 
c) must consider the effects of local curvature, because 
the j-direction is not vertical to the wavy surface. 
The local heat transfer coefficient, which is defined by 
Newton’s law of cooling, may be determined by using 
the heat balance at the boundary. In accordance with 
Fourier’s law the absolute value of the heat flux (see 
Fig. 1) is 

where 

q(x) = -kn’*VT (29) 

I 
n =-g+> n,=&. \ 

Using Newton’s law of cooling and Fourier’s law in 
equation (29), the resulting equation is 

I:(2(n+l)) ao 
= -_(l+a’Yq .c=o’ 

(30) 

Figure 4 shows the profiles of the Nusselt number 
obtained by using equation (30) for the case of dimen- 
sionless amplitude CL = 0.05,O. 10, 0.15, 0.20 and 0.25. 
The local heat transfer rate for the wavy vertical plate 
decreases when c1 increases. For the vertical plate the 
buoyancy force is parallel to the velocity profile. How- 
ever, the buoyancy force of the irregular surface is 
smaller than that of the vertical plate except at the 
highest and the lowest points. The wavelength of the 

2.5 

2.0 

1.5 

1.0 

0.5 

0.0 
Fig. 5. Axial velocity profile. 

local Nusselt number is half of that of the wavy 
surface. As the dimensionless amplitudes increase, the 
effects of geometry are more pronounced. However, 
the effects of amplitude gradually de&ease as the natu- 
ral convection boundary layers grow thicker along the 
plate. 

Figure 5 shows the dimensionless axial velocity pro- 
files past the wavy vertical surface for the case of 
CI = 0.1. The axial velocity profiles are sinusoidal 
along T-direction. The regular nodes along the z?- 
direction are .? = 1.5, 2.0. 2 = 1.75 and 2 = 2.25 rep- 
resent the trough and the crest of one wavy segment, 
respectively. The difference in the velocity in the crest 
and the trough is indiscernible. The boundary layer 
around the nodes is thicker compared to that of the 
crests or the troughs. It must be emphasized that the 
velocity component along the -?-direction in the com- 
putation domain is not paralleled to the physical 
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Fig. 6. Local Nusselt number for x = 0.0 
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Fig. 7. Local Nusselt number for a = 0.1. 
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surface. The local heat transfer rate cannot be 
obtained from the velocity component of the Cdirec- 
tion. 

Figures 6 and 7 show the variation of the local heat 
transfer rate as a function of Prandtl number, Pr and 
the flow index n for the cases of x = 0.0, 0.1. As can 
be seen from the figures, the local heat transfer rate 
along the axial direction increases for dilatant fluids 
while decreases for pseudoplastic fluids. With the 
increase of the Prandtl number, the local heat transfer 
rate is getting higher except around the leading edge 
of the surface. Distributions of the local Nusselt num- 
ber are illustrated in Fig. 7 for Y = 0.1. From the 
figure, the curves asymptotically approach a constant. 
The wavelength of the local heat transfer rate cor- 
responds to half of that of the wavy surface. The 
variation of heat transfer rate decreases for dilatant 
fluid and this shows the natural convection buoyancy 
layer is getting thicker along the .C-direction. The 
curvilinear effects of the surface for the viscous bound- 
ary layer correspond to the diffusion process. These 
effects are getting smaller when the boundary layer is 
fully developed. 

4. CONCLUSIONS 

Solutions of the effects of a irregular geometry in 
non-Newtonian fluids were investigated. Non-dimen- 
sional analyses were applied with the assumption that 
the Grashof number is large for the natural convection 
boundary layer. To show the effects of non-New- 
tonian fluids, the parameters like flow index, Prandtl 
number and Nusselt number were considered. For 
the thermal heat transfer coefficients, the effect of the 
geometry is large at the starting point of the vertical 
surface, however it decreases with increasing 1. The 
thermal boundary layer of pseudoplastic fluids is thin- 
ner than that of dilatant fluids. The wavelength of the 
local Nusselt number is half that of the wavy surface 
and the effects of amplitude decrease in the down- 
stream direction. When the dimensionless amplitude 
M increases, the amplitude of the surface increases 
and the local Nusselt number decreases. For a more 
profound understanding, experimental data are 
needed to examine the physical mechanism near 
irregular surfaces. 
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